10 research outputs found

    Modeling and Analysis of Shock Reduction through Counterflow Plasma Jets

    Get PDF
    The study presents a numerical investigation of aerodynamic drag reduction by implementing a counterflow plasma jet, emanating from the stagnation point of an aerodynamic surface in a supersonic regime with a constant pressure ratio , and compares findings with a conventional opposing jet. The computational study is carried out by solving three-dimensional and axisymmetric Navier–Stokes equations for counterflow plasma-jet interaction. The calculations are performed at free-stream Mach ( = 1.4) with sea level stagnation conditions. The weakly ionized argon plasma jet generated by a plasma torch has constant stagnation pressure and temperature of and . The effect of the Mach number and the angle of attack variation on plasma-jet effectiveness is also analyzed. The results indicate that the counterflow plasma jet reduces more drag (in twice) compared to the conventional jet (nonplasma). The gravitational, magnetic field effect and chemical processes in the plasma formation are considered negligible. It is inferred that the effectiveness of the counterflow plasma jet strongly depends upon the jet stagnation temperature

    Development and Fidelity Assessment of Potential Flow based Framework for Aerodynamic Modeling of High Lift Devices

    Get PDF
    High lift devices play a vital role in dictating the accelerated performance of an aircraft for different flight phases such as takeoff, landing, and aerobatic maneuvers. The aerodynamic design of high lift devices for any particular aircraft is an iterative process and is achieved through extensive aerodynamic Analysis of the aircraft for various flap configurations. Computational Fluid Dynamics (CFD) and Wind tunnel testing are highly effective techniques for performing the required Analysis, yet they have high computational costs and time. To overcome this shortcoming, a robust framework based on potential flow solver (PFS) and geometry parameterization is required without compromising the fidelity of the Analysis. This research aims to develop a highly robust aerodynamic analysis framework based on the Vortex Lattice Method (VLM) coupled with Polhamus Suction Analogy and parametric modeling of high lift devices. The fidelity of the framework is validated through experimental testing and is quantified by developing a fidelity assessment matrix. It is established that the computational cost of CFD has been reduced three times with only a 10% to 20% loss in accuracy when the developed framework is used. The developed PFS framework gives results from 80% to 90%. The framework results for a reference aircraft are thoroughly compared with CFD analyses. The framework provides values that agree with corresponding CFD analyses in a fraction of the time

    An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach

    Full text link
    The Landauer approach provides a conceptually simple way to calculate the intrinsic thermoelectric (TE) parameters of materials from the ballistic to the diffusive transport regime. This method relies on the calculation of the number of propagating modes and the scattering rate for each mode. The modes are calculated from the energy dispersion (E(k)) of the materials which require heavy computation and often supply energy relation on sparse momentum (k) grids. Here an efficient method to calculate the distribution of modes (DOM) from a given E(k) relationship is presented. The main features of this algorithm are, (i) its ability to work on sparse dispersion data, and (ii) creation of an energy grid for the DOM that is almost independent of the dispersion data therefore allowing for efficient and fast calculation of TE parameters. The inclusion of scattering effects is also straight forward. The effect of k-grid sparsity on the compute time for DOM and on the sensitivity of the calculated TE results are provided. The algorithm calculates the TE parameters within 5% accuracy when the K-grid sparsity is increased up to 60% for all the dimensions (3D, 2D and 1D). The time taken for the DOM calculation is strongly influenced by the transverse K density (K perpendicular to transport direction) but is almost independent of the transport K density (along the transport direction). The DOM and TE results from the algorithm are bench-marked with, (i) analytical calculations for parabolic bands, and (ii) realistic electronic and phonon results for Bi2Te3Bi_{2}Te_{3}.Comment: 16 Figures, 3 Tables, submitted to Journal of Computational electronic

    Towards end to end technology modeling: Carbon nanotube and thermoelectric devices

    No full text
    The goal of this work is to demonstrate the feasibility of end-to-end ( atoms to applications ) technology modeling. Two different technologies were selected to drive this work. The first technology is carbon nanotube field-effect transistors (CNTFETs), and the goal is to model device level variability and identify the origin of variations in these devices. Recently, there has been significant progress in understanding the physics of carbon nanotube electronic devices and in identifying their potential applications. For nanotubes, the carrier mobility is high, so low bias transport across several hundred nanometers is nearly ballistic, and the deposition of high-k gate dielectrics does not degrade the carrier mobility. The conduction and valence bands are symmetric (useful for complimentary application) and the bandstructure is direct (enables optical emission). Because of these striking features, carbon nanotubes (CNTs) have received much attention. Carbon nanotubes field-effect transistors (CNTFETs) are one of the main potential candidates for large-area electronics. In this research model, systematic simulation approaches are applied to understand the intrinsic performance variability in CNTFETs. It is shown that control over diameter distribution is critically important process parameter for attaining high performance transistors and circuits with characteristics rivaling those of state-of-the-art Si technology. The second technology driver concerns the development of a multi-scale framework for thermoelectric device design. An essential step in the development of new materials and devices for thermoelectrics is to develop accurate, efficient, and realistic models. The ready availability of user friendly ab-initio codes and the ever-increasing computing power have made the band structure calculations routine. Thermoelectric device design, however, is still largely done at the effective mass level. Tools that allow device designers to make use of sophisticated electronic structure and phonon dispersion calculations are needed. We have developed a proof-of-concept, integrated, multi-scale design framework for TE technology. Beginning from full electronic and phonon dispersions, Landauer approach is used to evaluate the temperature-dependent thermoelectric transport parameters needed for device simulation. A comprehensive SPICE-based model for electro-thermal transport has also been developed to serve as a bridge between the materials and device level descriptions and the system level simulations. This prototype framework has been used to design a thermoelectric cooler for managing hot spots in the integrated circuit chips. What\u27s more, as a byproduct of this research a suite of educational and simulation resources have been developed and deployed, on the nanoHUB.org science gateway to serve as a resource for the TE community

    Stability Characteristics of Wing Span and Sweep Morphing for Small Unmanned Air Vehicle: A Mathematical Analysis

    No full text
    Morphing aircraft are the flight vehicles that can reconfigure their shape during the flight in order to achieve superior flight performance. However, this promising technology poses cross-disciplinary challenges that encourage widespread design possibilities. This research aims to investigate the flight dynamic characteristics of various morphed wing configurations that can be incorporated in small-scale UAVs. The objective of this study was to analyze the effects of in-flight wing sweep and wingspan morphing on aerodynamic and flight stability characteristics. Longitudinal, lateral, and directional characteristics were evaluated using linearized equations of motion. An open-source code based on Vortex Lattice Method (VLM) assuming quasi-steady flow was used for this purpose. Trim points were identified for a range of angles of attack in prestall regime. The aerodynamic coefficients and flight stability derivatives were compared for the aforementioned morphing schemes with a fixed-wing counterpart. The results indicated that wingspan morphing is better than wing sweep morphing to harness better aerodynamic advantages with favorable flight stability characteristics. However, extension in wingspan beyond certain limits jeopardizes the advantages. Dynamically, wingspan and sweep morphing schemes behave in an exactly opposite way for longitudinal modes, whereas lateral-directional dynamics act in the same fashion for both morphing schemes. The current study provided a baseline to explore the advanced flight dynamic aspects of employed wing morphing schemes

    Shock Reduction through Opposing Jets—Aerodynamic Performance and Flight Stability Perspectives

    No full text
    In this research paper, investigations of counter flow (opposing) jet on the aerodynamic performance, and flight stability characteristics of an airfoil with blunt leading-edge in supersonic regime are performed. Unsteady Reynolds-Averaged Navier-Stokes ( U R A N S ) based solver is used to model the flow field. The effect of angle of attack ( α ), free-stream Mach number ( M ∞ ), and pressure ratio ( P R ) on aerodynamic performance of airfoil with and without jet are compared. The results indicate that the opposing jet reduces drag from 30 % to 70 % , improves the maximum lift-to-drag ratio from 2.5 to 4.0, and increases shock stand-off distance from 15 % to 35 % depending on flow conditions. The effect of opposing jet on longitudinal flight stability characteristics, studied for the first time, indicate improvement in dynamic stability coefficients ( C m q + C m α ˙ ) at low angles of attack. It is concluded that the opposing jet can help mitigate flight disturbances in supersonic regime

    Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates

    Get PDF
    Epitaxial ScN(001) thin films were grown on MgO(001) substrates by dc reactive magnetron sputtering. The deposition was performed in an Ar/N-2 atmosphere at 2 x 10(-3) Torr at a substrate temperature of 850 degrees C in a high vacuum chamber with a base pressure of 10(-8) Torr. In spite of oxygen contamination of 1.6 +/- 1 at. %, the electrical resistivity, electron mobility, and carrier concentration obtained from a typical film grown under these conditions by room temperature Hall measurements are 0.22 m Omega cm, 106 cm(2) V-1 s(-1), and 2.5 x 10(20) cm(-3), respectively. These films exhibit remarkable thermoelectric power factors of 3.3-3.5 x 10(-3) W/mK(2) in the temperature range of 600 K to 840 K. The cross-plane thermal conductivity is 8.3 W/mK at 800 K yielding an estimated ZT of 0.3. Theoretical modeling of the thermoelectric properties of ScN calculated using a mean-free-path of 23 nm at 300 K is in very good agreement with the experiment. These results also demonstrate that further optimization of the power factor of ScN is possible. First-principles density functional theory combined with the site occupancy disorder technique was used to investigate the effect of oxygen contamination on the electronic structure and thermoelectric properties of ScN. The computational results suggest that oxygen atoms in ScN mix uniformly on the N site forming a homogeneous solid solution alloy. Behaving as an n-type donor, oxygen causes a shift of the Fermi level in ScN into the conduction band without altering the band structure and the density of states. (C) 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801886

    PCR-based detection in a micro-fabricated platform

    No full text
    We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 mu l volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes ( in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 104 cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed
    corecore